Poisson Process and the Exponential pdf

N(t) is a point process that can represent the <u>State</u> of the system at time t.

Goal: Find Prob [the system is in state k at t sec]=P(N(t)=k)=P[k,t]

(if each increment in the process represents an arrival or "birth", then P[k,t]=Probability of # arrivals in t sec

Network Performance...

1

2

Analysis Pure Birth (Poisson) Process: Assumptions

Prob[1 arrivals in Δ t sec] = $\lambda \Delta$ t Prob[0 arrivals in Δ t sec] = 1- $\lambda \Delta$ t Independent Increments Number of arrivals in non-overlapping intervals of times are statistically independent random variables, i.e., Prob [N arrivals in t, t+T AND M arrivals in t+T, t+T+ τ] = Prob [N arrivals in t, t+T]*Prob[M arrivals in t+T, t+T+ τ]

This is called a Poisson process or pure birth process

Network Performance...

1

Interarrival Time Analysis

The interarrival time for a Poisson arrival process follows an exponential probability density function with

 $E[T_a] = \frac{1}{\lambda} \quad Var[T_a] = \frac{1}{\lambda^2}$

Network Performance ...

11