Poisson Process and the Exponential pdf

$\mathrm{N}(\mathrm{t})$ is a point process that can represent the State of the system at time t .
Goal: Find Prob [the system is in state k at $t \sec]=P(N(t)=k)=P[k, t]$ (if each increment in the process represents an arrival or "birth", then $P[k, t]=$ Probability of \# arrivals in t sec

Analysis
 Pure Birth (Poisson) Process: Assumptions

$\operatorname{Prob}[1$ arrivals in $\Delta \mathrm{tsec}]=\lambda \Delta \mathrm{t}$
$\operatorname{Prob}[0$ arrivals in $\Delta \mathrm{tsec}]=1-\lambda \Delta \mathrm{t}$
Independent Increments
Number of arrivals in non-overlapping intervals of times are statistically independent random variables, i.e.,
Prob [N arrivals in $\mathrm{t}, \mathrm{t}+\mathrm{T}$ AND M arrivals in $\mathrm{t}+\mathrm{T}, \mathrm{t}+\mathrm{T}+\tau$]
$=\operatorname{Prob}[\mathrm{N}$ arrivals in $\mathrm{t}, \mathrm{t}+\mathrm{T}] * \operatorname{Prob}[\mathrm{M}$ arrivals in $\mathrm{t}+\mathrm{T}, \mathrm{t}+\mathrm{T}+\tau]$
This is called a Poisson process or pure birth process

Analysis

Define probability of k in the system at time $t=\operatorname{Prob}[k, t]$
Probability of k in the system at time $t+\Delta t=\operatorname{Prob}[k, t+\Delta t]$
$=\operatorname{Prob}[\mathrm{k}, \mathrm{t}+\Delta \mathrm{t}] \operatorname{Prob}[(\mathrm{k}$ in the system at time t and 0 arrivals in $\Delta \mathrm{t})$ or ($k-1$ in the system at time t and 1 arrival in $\Delta t)$]

$$
=(1-\lambda \Delta \mathrm{t}) \operatorname{Prob}[\mathrm{k}, \mathrm{t}]+\lambda \Delta \mathrm{t} \operatorname{Prob}[\mathrm{k}-1, \mathrm{t}]
$$

Analysis

Rearranging terms
$(\operatorname{Prob}[k, t+\Delta t]-\operatorname{Prob}[k, t]) / \Delta t+\lambda \operatorname{Prob}[k, t]=\lambda \operatorname{Prob}[k-1, t]$

Letting $\Delta \mathrm{t}$--> 0 results in the following differential equation:

$$
\frac{\mathrm{dProb}[\mathrm{k}, \mathrm{t}]}{\mathrm{dt}}+\lambda \operatorname{Prob}[\mathrm{k}, \mathrm{t}]=\lambda \operatorname{Prob}[\mathrm{k}-1, \mathrm{t}]
$$

Analysis

For $\mathrm{k}=0$ the solution is:
$>\operatorname{Prob}[0, \mathrm{t}]=\quad e^{-\lambda t}$
For $\mathrm{k}=1$ the solution is:
$>\operatorname{Prob}[1, \mathrm{t}]=\quad \lambda t e^{-\lambda t}$
For $\mathrm{k}=2$ the solution is:
$\Rightarrow \operatorname{Prob}[2, \mathrm{t}]=\quad \frac{(\lambda t)^{2} e^{-\lambda}}{2}$

Analysis

In general the solution is a Poisson probability mass function of the form:

$$
\operatorname{Prob}[k, t]=\frac{(\lambda t)^{k} e^{-\lambda t}}{k!}
$$

Analysis

A Poisson pmf of this from has the following moments:

$$
\begin{aligned}
& E[k]=\lambda t \\
& \operatorname{Var}[k]=\lambda t
\end{aligned}
$$

Poisson Arrival Process
The number of arrivals in any t second interval follows a Poisson probability mass function.

Interarrival Time Analysis

$\operatorname{Prob}[\mathrm{t}<\mathrm{Ta}<\mathrm{t}+\Delta \mathrm{t}]=\operatorname{Prob}[0$ arrivals in t sec and 1 arrival in $\Delta \mathrm{t}]$
$\operatorname{Prob}[\mathrm{t}<\mathrm{Ta}<\mathrm{t}+\Delta \mathrm{t}]=\operatorname{Prob}[\mathrm{k}=0, \mathrm{t}] \operatorname{Prob}[\mathrm{k}=1, \Delta \mathrm{t}]$
$\operatorname{Prob}[\mathrm{t}<\mathrm{Ta}<\mathrm{t}+\Delta \mathrm{t}]=\left(e^{-\lambda t}\right) \lambda \Delta t e^{-\lambda \Delta t}$

Interarrival Time Analysis

Let $\Delta \mathrm{t} \rightarrow 0$ results in the following

$$
\operatorname{Prob}\left[\mathrm{t}<\mathrm{T}_{\mathrm{a}}<\mathrm{t}+\mathrm{dt}\right]=\mathrm{f}_{\mathrm{T}_{\mathrm{a}}}(\mathrm{t}) \mathrm{dt}=\lambda \mathrm{e}^{-\lambda \mathrm{t}} \mathrm{dt}
$$

so
$\mathrm{f}_{\mathrm{T}_{\mathrm{a}}}(\mathrm{t})=\lambda \mathrm{e}^{-\lambda \mathrm{t}}$ for $\mathrm{t}>0 \mathrm{f}_{\mathrm{T}_{\mathrm{a}}}(\mathrm{t})=0$ for $\mathrm{t}<0$

$$
\begin{aligned}
& P\left[T_{a}<t\right]=u(t)\left(1-e^{-\lambda t}\right) \\
& f_{T_{a}}(t)=u(t) \lambda e^{-\lambda t}
\end{aligned}
$$

The distribution of interarrival times is exponential

Interarrival Time Analysis

The interarrival time
for a Poisson arrival process follows
an exponential probability density function with

$$
E\left[T_{a}\right]=1 / \lambda \quad \operatorname{Var}\left[T_{a}\right]=1 / \lambda^{2}
$$

